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More Accurate, Less Fair?

<
Models with synthetic training 

data can be more accurate

<?
Models with synthetic training 

data can be more fair
“Often you have a bunch of mappings X→Y, Y→Z, etc and 
you want other mappings implied by these.

A simple approach is to use the given mappings to sample 
training data for the implied mappings …”

phillip_isola
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73.1 17.1 09.8   64.9  35.1  44.2 03.9 51.9   

69.8 20.8 09.4   63.0  37.0  44.0 04.2 51.8 

FFHQ Dataset

StyleGAN2



9

Prior Work: How to Protect Diversity?
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Our Approach: Quality-Diversity Generative Sampling (QDGS)

0.7

0.1

0.2

0.0

Generator

0.3

0.2

0.3

0.2

1.00.0

+ →

Proportion

Better RepresentationOptimize Generation 
w/ Quality-Diversity



11

QDGS: Creating Balanced & Intersectional Data
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QDGS: Creating Balanced & Intersectional Data
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Toy Domain: Color-Biased Shapes

b (majority) 1 - b (minority)

               Synthetic
  (Trained on b=0.98)

                   Real 

5 Versions:   b ∊ {0.98, 0.95, 0.90, 0.85, 0.80}
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Spread w.r.t. CLIP

Generator Generator +       QDGS
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Repairing Biases in Classifiers



1. Generate Synthetic 
Pretraining Datasets

2. Pretrain + Train 
Facial Recognition 
Classifiers

3. Evaluate        Fairness,        Accuracy
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QDGS on StyleGAN2
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Spread w.r.t. CLIP
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Spread w.r.t. Categorical Labels
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73.1 17.1 09.8   64.9  35.1  44.2 03.9 51.9   

69.8 20.8 09.4   63.0  37.0  44.0 04.2 51.8

 
56.8 18.1 25.2   54.3  45.7  51.1 04.3 44.6

FFHQ Dataset

StyleGAN2

StyleGAN2 + QDGS



Repairing Biases in Classifiers
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88.08±0.07     94.05±0.06      93.65±0.10

88.69±0.10     94.67±0.07      93.68±0.10

 
88.94±0.07     94.62±0.10      93.99±0.06

None

Rand50

QD50



Effects on Accuracy
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99.38±0.02  95.14±0.06  90.24±0.09  93.53±0.05  94.33±0.06  94.52±0.03

99.45±0.02  95.70±0.04  90.91±0.08  93.60±0.04  94.82±0.05  94.89±0.03

99.50±0.01  95.72±0.03  90.94±0.06  93.71±0.06  94.72±0.07  94.92±0.02

None

Rand50

QD50



Limitations of QDGS
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→ QDGS aims for uniform representations, 
rather than proportionate representations 

→ Language prompts should be carefully 
designed to avoid linguistic biases

→ Desired attributes must be represented 
to a sufficient standard in the data used to 
train the generative model



→ QDGS uses QD optimization + text prompts 
to create balanced synthetic training datasets

→ Better fairness improvement, similar 
accuracy improvement
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Takeaways


