Quality-Diversity Generative Sampling for Learning with Synthetic Data

Allen Chang¹, Matthew C. Fontaine¹, Serena Booth², Maja J. Matarić¹, Stefanos Nikolaidis¹

Paper 11791

AAAI-24 / IAAI-24 / EAAI-24

Learning with Synthetic Data

Learning with Synthetic Data

More Accurate, Less Fair?

Synthetic Data from Diffusion Models Improves ImageNet Classification

Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia*, Mohammad Norouzi*, David J. Fleet Google Research, Brain Team †

StableRep: Synthetic Images from Text-to-Image Models Make Strong Visual Representation Learners

 Yonglong Tian^{1,*}
 Lijie Fan^{1,2,*}
 Phillip Isola²
 Huiwen Chang¹
 Dilip Krishnan¹

 ¹Google Research, ²MIT CSAIL, *equal contribution

phillip_isola

"Often you have a bunch of mappings $X \rightarrow Y$, $Y \rightarrow Z$, etc and you want other mappings implied by these.

A simple approach is to use the given mappings to sample training data for the implied mappings ..."

Models with synthetic training data can be more accurate

Models with synthetic training data can be more fair

More Accurate, Less Fair?

"Often you have a bunch of mappings $X \rightarrow Y$, $Y \rightarrow Z$, etc and

A simple approach is to use the given mappings to sample

you want other mappings implied by these.

training data for the implied mappings ..."

Models with synthetic training data can be more fair?

Bias in Real Data → Bias in Synthetic Data

Bias in Real Data \rightarrow Bias in Synthetic Data

Bias in Real Data \rightarrow Bias in Synthetic Data

		Skin Tone	Age	Gender	
\frown		Light Mixed Dark	Young Old	Masc Andro Fem	
	FFHQ Dataset	73.1 17.1 09.8	64.9 35.1	44.2 03.9 51.9	
	\checkmark	¥	¥	¥	
	StyleGAN2	69.8 20.8 09.4	63.0 37.0	44.0 04.2 51.8	

Prior Work: How to Protect Diversity?

Our Approach: Quality-Diversity Generative Sampling (QDGS)

QDGS: Creating Balanced & Intersectional Data

QDGS: Creating Balanced & Intersectional Data

Toy Domain: Color-Biased Shapes

5 Versions: b ∈ {0.98, 0.95, 0.90, 0.85, 0.80}

Spread w.r.t. CLIP

Repairing Biases in Classifiers

QDGS on StyleGAN2

1. Generate Synthetic Pretraining Datasets

2. Pretrain + Train Facial Recognition Classifiers

Spread w.r.t. CLIP

Spread w.r.t. Categorical Labels

		Skin Tone		Age		Gender			
\bigcirc		Light	Mixed	d Dark	Young	Old	Masc .	Andro	Fem
	FFHQ Dataset	73.1	17.1	09.8	64.9	35.1	44.2	03.9	51.9
	StyleGAN2	69.8	20.8	09.4	63.0	37.0	44.0	04.2	51.8
	StyleGAN2 + QDGS	56.8	18.1	25.2	54.3	45.7	51.1	04.3	44.6

Repairing Biases in Classifiers

Pretraining		Dark-skinned	Light-skinned	DI	
	None	88.08±0.07	94.05±0.06	93.65±0.10	
	Rand50	88.69±0.10	94.67±0.07	93.68±0.10	
	QD50	88.94±0.07	94.62±0.10	93.99±0.06	

Effects on Accuracy

Pretraining	LFW	CFPFP	CPLFW	CALFW	AgeDB	AVG
None None	99.38±0.02	95.14±0.06	90.24±0.09	93.53±0.05	94.33±0.06	94.52±0.03
Rand50	99.45±0.02	95.70±0.04	90.91±0.08	93.60±0.04	94.82±0.05	94.89±0.03
💁 QD50	99.50±0.01	95.72±0.03	90.94±0.06	93.71±0.06	94.72±0.07	94.92±0.02

Limitations of QDGS

 \rightarrow QDGS aims for uniform representations, rather than proportionate representations

 \rightarrow Language prompts should be carefully designed to avoid linguistic biases

→ Desired attributes must be represented to a sufficient standard in the data used to train the generative model

Takeaways

 \rightarrow QDGS uses QD optimization + text prompts to create balanced synthetic training datasets

→ Better fairness improvement, similar accuracy improvement