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Learning with Synthetic Data
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More Accurate
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Synthetic Data from Diffusion Models
Improves ImageNet Classification

Google Research, Brain Team i
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@ StableRep: Synthetic Images from Text-to-Image
Models Make Strong Visual Representation Learners
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“Often you have a bunch of mappings X—Y, Y—Z, etc and

you want other mappings implied by these.

A simple approach is to use the given mappings to sample

training data for the implied mappings ...”

@

< 00

Models with synthetic training
data can be more accurate



Less Fair?

Synthetic Data from Diffusion Models
Improves ImageNet Classification
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Models Make Strong Visual Representation Learners
data can be more accurate
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“Often you have a bunch of mappings X—Y, Y—Z, etc and Models with Synthet|c tra'mng
data can be more fair?

you want other mappings implied by these.

A simple approach is to use the given mappings to sample
training data for the implied mappings ...”



Bias in Real Data
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Bias in Real Data — Bias in Synthetic Data
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Bias in Real Data — Bias in Synthetic Data

Skin Tone Age Gender
Light Mixed Dark Young Old Masc Andro Fem
FFHQ Dataset 73.1 17.1 09.8 64.9 35.1 44.2 03.9 51.9

v v v v

<
StyleGAN2 69.8 20.8 09.4 63.0 37.0 44.0 04.2 51.8



Prior Work: How to Protect Diversity?
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Our Approach: Quality-Diversity Generative Sampling (QDGS)
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QDGS: Creating Balanced & Intersectional Data
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QDGS: Creating Balanced & Intersectional Data
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Toy Domain: Color-Biased Shapes
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Square to Triangle

Spread w.r.t. CLIP
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Repairing Biases in Classifiers

Debiasing Color-Biased Shape Classifiers with QDGS
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QDGS on StyleGAN2
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Spread w.r.t. CLIP
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Spread w.r.t. Categorical Labels

FFHQ Dataset

StyleGAN2

StyleGAN2 + QDGS

Skin Tone
Light Mixed Dark

Age Gender
Young Old Masc Andro Fem

73.1 17.1 09.8

69.8 20.8 09.4

56.8 18.1 25.2

64.9 35.1 44.2 03.9 51.9

63.0 37.0 44.0 04.2 51.8

54.3 45.7 51.1 04.3 44.6
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Repairing Biases in Classifiers

Pretraining Dark-skinned Light-skinned DI
<A¥ None 88.08+0.07 94.05+0.06 93.65+0.10
Rand50 88.69+0.10 94.67+0.07 93.68+0.10

=i, QD50 88.9410.07 94.6210.10 93.9910.06



Effects on Accuracy

LFW CFPFP CPLFW CALFW AgeDB AVG

Pretraining
? None
XP» Rand50

99.3810.02 95.14+0.06 90.24%+0.09 93.53%0.05 94.33%0.06 94.52+0.03

99.4510.02 95.70+0.04 90.91+0.08 93.60+0.04 94.82+0.05 94.89%0.03

99.50£0.01 95.72+0.03 90.94%0.06 93.71+0.06 94.72+0.07 94.92%0.02
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Limitations of QDGS

— QDGS aims for uniform representations,
rather than proportionate representations

— Language prompts should be carefully
designed to avoid linguistic biases

— Desired attributes must be represented
to a sufficient standard in the data used to
train the generative model
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Takeaways

— QDGS uses QD optimization + text prompts
to create balanced synthetic training datasets

— Better fairness improvement, similar
accuracy improvement
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